
Chapter 8

Wide Area Networks

Outline

- **8.2 Circuit-Switched Networks**
- 8.3 Dedicated-Circuit Networks
- 8.4 Packet-Switched Networks
- **8.5 Virtual Private Networks**

8.1 Introduction

- Wide area networks (WANs)
 - Connect BNs and LANs across distance
- Utilize leased circuits from common carriers such as AT&T
- Common Carriers
 - Local Exchange Carriers (LECs) (Local Phone Company)
 - Verizon
 - Interexchange Carriers (IXCs) (Long Distance phone Company)
 - Sprint

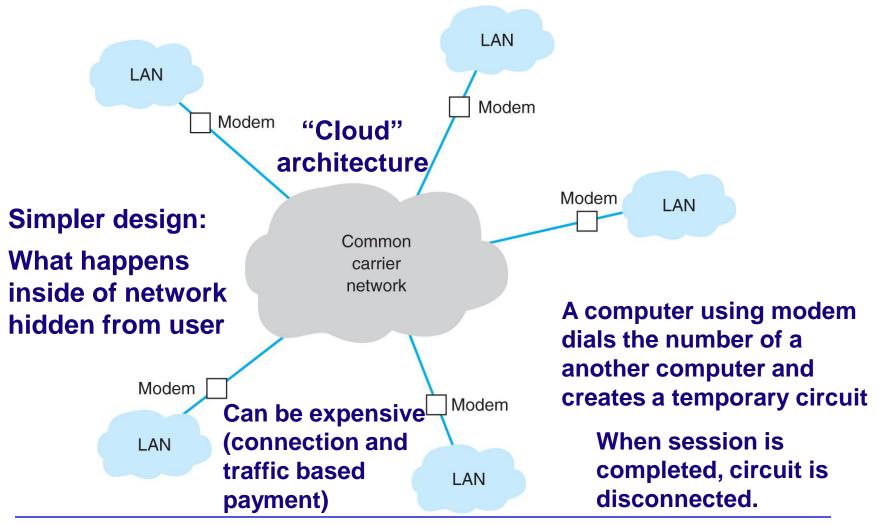
WAN Services

- Common carrier networks
 - Circuit-Switched Networks
 - Dedicated-Circuit Networks
 - Packet-Switched Networks
- Public networks
 - Virtual Private Networks (VPN)
- Ethernet MAN

https://www.youtube.com/watch?v=nEUDzOptEn0

8.2 Circuit Switched Services

 Public Switched Telephone Network (PSTN), (the telephone networks)


Provided by common carriers

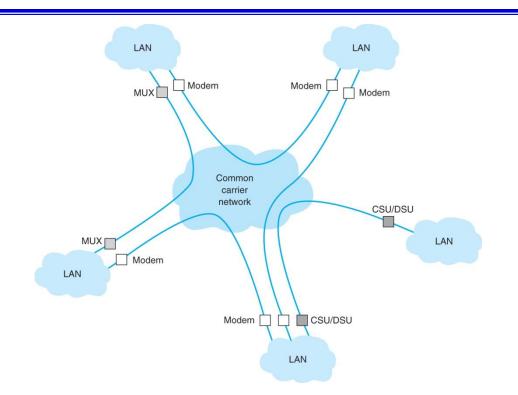
Common Carriers Used to Provide:

– POTS (Plain Old Telephone Service)

- Via use of modems to dial-up and connect to ISPs (5% of US population uses)
- Oldest, simplest WAN technology
- ISDN (Integrated Services Digital Network)

Basic Circuit Switched Architecture

Copyright 2011 John Wiley & Sons, Inc


Circuit Switched Services

- Simple, flexible, inexpensive, slow
- Main issues
 - Need to make separate connection each time (Overhead)
 - Low Data transmission rates
 - Up to 56 Kbps for POTS, and up to 1.5 Mbps for ISDN
 - Slow
- Alternative
 - Private dedicated circuit
 - Leased from a common carrier for the user's exclusive use
 - Expensive

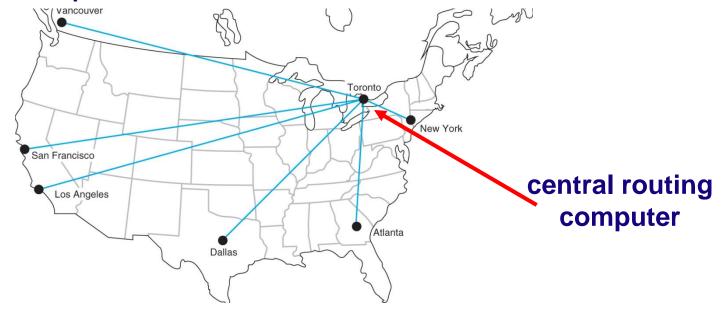
8.3 Dedicated Circuits

- Leased full duplex circuits from common carrier
- Point to point linking between locations
 - Routers and switches connect locations
- Flat monthly fee
 - Unlimited use
- Three basic dedicated circuit architectures (topologies)
 - Ring, star, mesh
- Dedicated Circuit Services
 - T carrier services
 - Synchronous Optical Network (SONET) services
 - Ethernet WAN (EWAN)

Dedicated Circuit Services

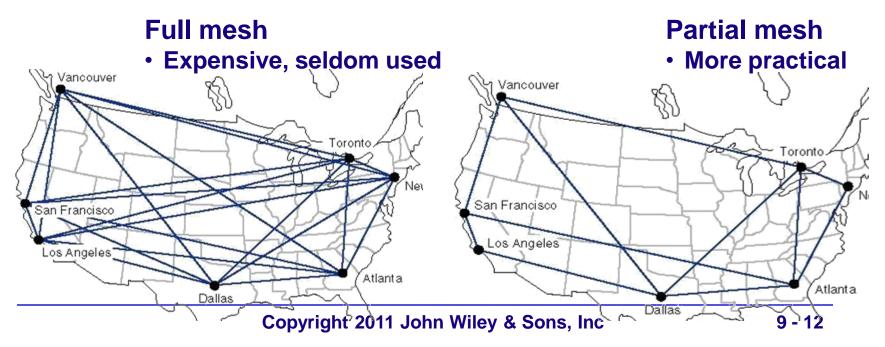
Equipment installed at the end of dedicated circuits

• CSU/DSU: Channel Service Unit / Data Service Unit which is the WAN equivalent of a LAN NIC


Ring Architecture

- Reliable
 - Data can flow in both directions (full-duplex)
 - Even with break, data continues to flow
 - Dramatically reduced performance if ring breaks
- Performance
 - Messages travel through many nodes before reaching destination

Star Architecture


- Easy management
 - Central computer routes all messages
- Points of failue
 - Failure of central computer brings the network down
 - Failure of any circuit or computer affects one site only
- Performance
 - Central computer can be bottleneck

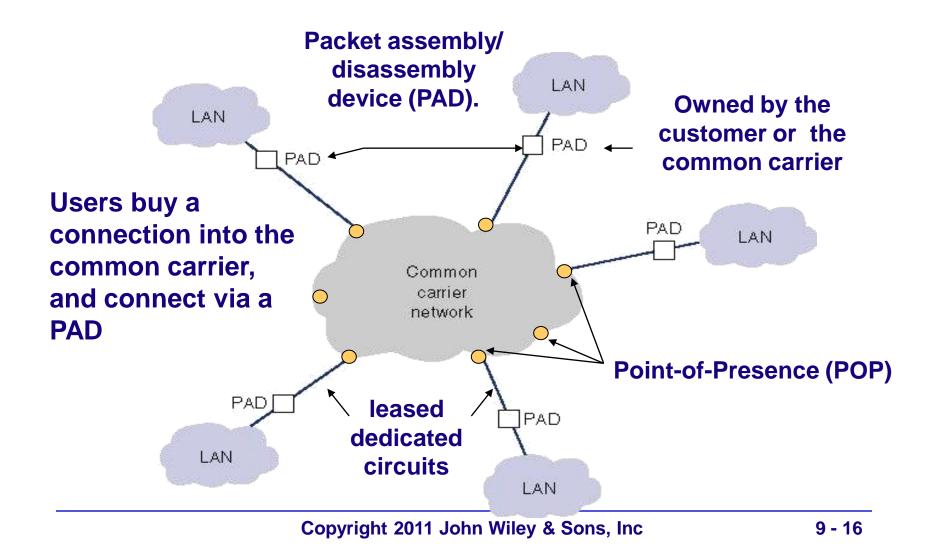
Copyright 2011 John Wiley & Sons, Inc

Mesh Architectures

- Combine performance benefits of ring and star networks
- Use decentralized routing, with each computer performing its own routing
- Impact of losing a circuit is minimal (because of the alternate routes)
- More expensive than setting up a star or ring network.

T-Carrier Services

- Most commonly used dedicated digital circuits
 - Time Division Multiplexing
- T-hierarchy
 - DS-0 (64 Kbps); Basic T-1 unit, bound into groups of 24
 - T-1, also called DS-1 (1.544 Mbps)
 - 24 simultaneous 64 Kbps channels
 - Fractional T-1, (FT-1) offers a portion of a T-1
 - T-3 (44.376 Mbps); 28 T-1 capacity
- Europe uses E-Carrier services...


T-Carrier Digital Hierarchy

T Carrier Designation	DS Designation	Speed
FT1	DS0	64 Kbps
T1	DS1	1.544 Mbps
T2	DS2	6.312 Mbps
Т3	DS3	44.376 Mbps
T4	DS4	274.176 Mbps

8.4 Packet Switched Services

- In both circuit switched and dedicated services
 - Circuit established between two end points
 - Dedicated for exclusive use between these two end points
 - Circuit switched dedicated exclusively to communications between those two end points
 - Premium cost
- Packet switched services
 - Multiple connections exist simultaneously between computers over the same physical circuit
 - User pays a fixed fee for the connection to the network plus charges for packets transmitted
 - Frame Relay, SONET, MPLS

Basic Architecture Packet Switched Services

Packet Switching

- Interleaves packets from separate messages for transmission
 - Most data communications consists of short bursts
 - Packet switching takes advantage of burstiness
 - Interleaving bursts from many users optimizes shared network use

Copyright 2011 John Wiley & Sons, Inc

Packet Routing

- Describe which intermediate devices the data is routed through
- Connectionless (Datagram)
 - Adds a destination and sequence number to each packet
 - Individual packets can follow different routes through the network
 - Packets reassembled at destination
- Connection Oriented (Virtual Circuit (VC))
 - Establishes an end-to-end circuit between the sender and receiver
 - All packets for that transmission take the same route over the virtual circuit established
 - Same physical circuit can carry many VCs

Virtual Circuit Types

- Permanent Virtual Circuit (PVCs)
 - Long duration (days, weeks)
 - Changed only by the network administrator
 - Commonly used
 - Packet switched networks using PVCs behave like a dedicated circuit networks
- Switched Virtual Circuit (SVC)
 - Established dynamically on a per call basis
 - Disconnected when call ends

Packet Switched Protocols

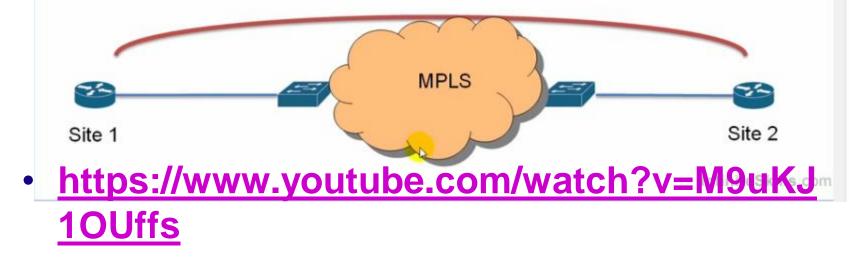
- Asynchronous Transfer Mode (ATM)
- Frame Relay
- IP/MPLS
- Ethernet Services

 Several common carriers have announced they will soon stop offering all but Ethernet and Internet services

Asynchronous Transfer Mode (ATM)

- Packet switching service
- Operating characteristics
 - Performs packet encapsulation (no translation)
 - Provides no error control (unreliable protocol)
 - Provides extensive QoS information
 - Scalable (easy to multiplex ATM circuits onto much faster ones)
 - Typically uses SONET at layer 2
- Data Rates
 - Same rates as SONET: 51.8, 466.5, 622.08 Mpbs
 - New versions: T1 ATM (1.5 Mbps), T3 ATM (45 Mbps)

Ethernet WAN Services


- Most organizations use Ethernet /IP on their LAN and BN.
- Ethernet Services differ from WAN packet services like ATM or Frame Relay
 - Currently offer CIR speeds from 1 to 40 Gbps at a lower cost than traditional services
- No need to translate LAN protocol (Ethernet/IP) to WAN protocol
- Emerging technology

Ethernet WAN Services

Ethernet as a WAN technology

- Normally Ethernet is a LAN technology due to distance limitations at layers 1 and 2
- Copper cables are limited to 100 meters
- Fiber is limited to just a few miles depending on the technology used
- · However many service providers provision WAN circuits as Ethernet connections

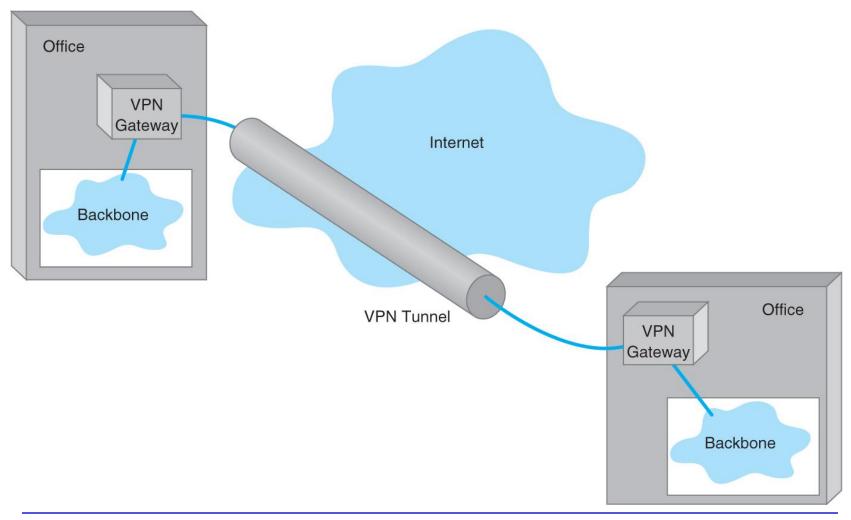
Multi Protocol Label Switching (MPLS)

- Relatively new WAN technology
- Designed to work with a variety of commonly used layer 2 protocols

MPLS – How It Works

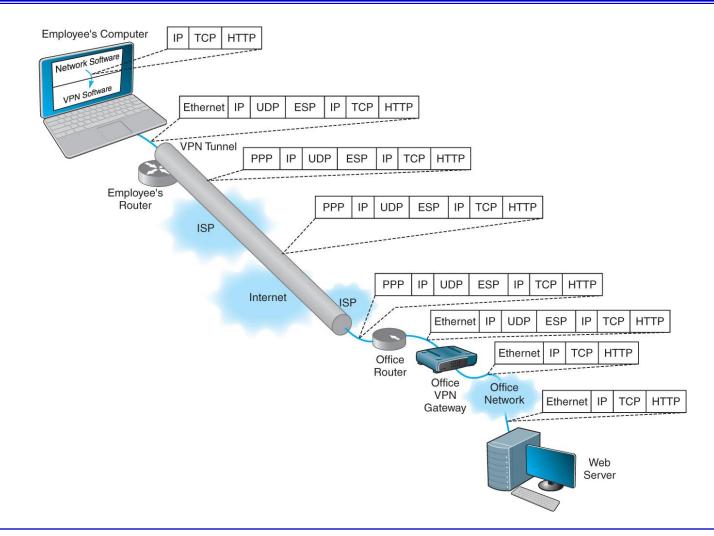
- Customer connects to common carrier's network using any common layer 2 service
 - T carrier, SONET, ATM, frame relay, Ethernet
- At network entry point, carrier's switch examines incoming frame and converts incoming layer 2 or layer 3 address into an MPLS address label
 - Carrier can use the same layer 2 protocol inside its network as the customer...
- When delivered, MPLS switch removes MPLS header and delivers the packet into the customer's network using whatever layer 2 protocol the customer has used...
 - Frame relay, T1.

1.) Faster than traditional routing


2.) Common carriers in the U.S. and Canada typically have a different way of charging for MPLS services.

•Common to use a full mesh design in which every location is connected to every other location. Packets take fewer hops and thus less time to reach their destinations

8.5 Virtual Private Networks


- Equivalent of a private packet switched network over Internet
 - Use Virtual Circuits (*tunnels*) that run over the Internet
 - Appear to the user as private networks
 - Encapsulate packets sent over these tunnels using special protocols that also encrypt the IP packets
- Low cost and flexibile
- Disadvantages:
 - Unpredictability of Internet traffic
 - Not all vendor equipment and services are compatible

One VPN Architecture

Copyright 2011 John Wiley & Sons, Inc

VPN Encapsulation of Packets

Three VPN Types

- Intranet VPN
 - Virtual circuits between organization offices over the Internet
- Extranet VPN
 - Connects several different organizations, e.g., customers and suppliers
- Access VPN
 - Enables employees to access an organization's networks from remote locations

8.8 Implications

- Changing role of networking and telecomm managers
 - Increased and mostly digitized data transmission causing the merger of these positions
- Changing technology
 - Within 5 years, ATM may disappear
 - Increasing dominance of Ethernet and MPLS
 - Decreasing cost of setting up WANs
- Changing vendor profiles
 - From telecomm vendors to vendors with Ethernet and Internet experiences

